Lazer-Leach Type Conditions on Periodic Solutions of Liénard Equation with a Deviating Argument at Resonance

نویسنده

  • Wing-Sum Cheung
چکیده

and Applied Analysis 3 (3) The Brouwer degree deg{JQN,Ω∩Ker L, 0} ̸ = 0, where J : ImQ → Ker L is an isomorphism. Then equation Lx = Nx has at least one solution onD(L)∩Ω. 3. Main Results In this section, we will use the continuation theorem introduced in Section 2 to prove the existence of periodic solutions of (1). To this end, we first quote some notations and definitions. Let X and Y be two Banach spaces defined by the following: X = {x ∈ C 1 (R,R) : x (t + 2π) = x (t) , ∀t ∈ R} , Y = {y ∈ C (R,R) : y (t + 2π) = y (t) , ∀t ∈ R} (14) with the following norms ‖x‖ X = max {‖x‖ ∞ , 󵄩 󵄩 󵄩 󵄩 󵄩 x 󸀠󵄩 󵄩 󵄩 󵄩∞ } , 󵄩 󵄩 󵄩 󵄩 y 󵄩 󵄩 󵄩 󵄩Y = 󵄩 󵄩 󵄩 󵄩 y 󵄩 󵄩 󵄩 󵄩∞ . (15) Define a linear operator L : D (L) ⊂ X 󳨀→ Y, Lx = x 󸀠󸀠 + n 2 x, (16) where D(L) = {x ∈ X : x󸀠󸀠 ∈ C(R,R)}, and a nonlinear operator N : X 󳨀→ Y, (Nx) (t) = −f (x (t)) x 󸀠 (t) − g (x (t − τ)) + p (t) . (17) It is easy to see that Ker L = Span {sin nt, cos nt} , Im L = {y ∈ Y : ∫ 2π 0 y (t) sin ntdt = 0,

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Periodic Solutions for p-Laplacian Liénard Equation with a Deviating Argument

By employing Mawhin’s continuation theorem, the existence of periodic solutions of the p-Laplacian Liénard equation with a deviating argument (φp(x′(t)))′ + f(x(t))x′(t) + g(x(t− τ(t))) = e(t) under various assumptions are obtained. Keywords—periodic solution, Mawhin’s continuation theorem, deviating argument.

متن کامل

On the Existence of Periodic Solutions for p-Laplacian Generalized Liénard Equation

By employing Mawhin’s continuation theorem, the existence of periodic solutions of the p-Laplacian generalized Liénard equation with deviating argument (φp(x′(t)))′ + f(t, x(t))x′(t) + β(t)g(x(t− τ(t))) = e(t) under various assumptions are obtained. Keywords—periodic solution, Mawhin’s continuation theorem, deviating argument.

متن کامل

Periodic Solutions for a Liénard Equation with Two Deviating Arguments

In this work, we prove the existence and uniqueness of periodic solutions for a Liénard equation with two deviating arguments. Our main tools are the Mawhin’s continuation theorem and the Schwarz inequality. We obtain our results under weaker conditions than those in [14], as shown by an example in the last section of this artticle.

متن کامل

Positive Almost Periodic Solutions for a Class of Nonlinear Duffing Equations with a Deviating Argument∗

In this paper, we study a class of nonlinear Duffing equations with a deviating argument and establish some sufficient conditions for the existence of positive almost periodic solutions of the equation. These conditions are new and complement to previously known results.

متن کامل

Anti-Periodic Solutions for a Class of Third-Order Nonlinear Differential Equations with a Deviating Argument

In this paper, we study a class of third-order nonlinear differential equations with a deviating argument and establish some sufficient conditions for the existence and exponential stability of anti-periodic solutions of the equation. These conditions are new and complement to previously known results.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014